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constraint of the non-linear sigma model) and two flat connections. In this case we verify
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we give a formal proof that in D dimensions (without counterterms) the Feynman rules

provide a perturbative symmetric solution.
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1. Introduction

In refs. [1, 2] it was proposed to quantize the non-linear sigma model in D = 4 by embedding

the pion fields in a flat connection in order to solve the long-standing problem [3]–[9] of

a symmetric removal of the divergences. The theory is defined by the functional equation

for the connected amplitudes

S(W ) =
(m2

D

2
∂µ δW

δJ
µ
a

+g2 δW

δKa
K0−Ka

δW

δK0
−gεabcKb

δW

δKc
+2D

[

δW

δJ

]µ

ab

Jbµ

)

(x) = 0 (1.1)

or for 1-PI amplitudes

(Γ,Γ) =
(m2

D

2
∂µ δΓ

δJ
µ
a

+ g2φaK0 +
δΓ

δK0

δΓ

δφa
+ gεabc

δΓ

δφb
φc + 2D

[

δΓ

δJ

]µ

ab

Jbµ

)

(x) = 0 (1.2)

with

D[X]µab = ∂µδab − gεabcX
µ
c . (1.3)
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Moreover it was conjectured and shown [1] in a few examples that standard pertur-

bation theory in D-dimensions gives amplitudes that satisfy the equation without any

subtractions. The limit to D = 4 is divergent and needs subtraction of the poles of the

Laurent expansion. This is done by using the properly normalized 1-PI amplitudes involv-

ing only insertions of flat connections and the constrained field φ0, i.e. those amplitudes

which are on the top of the hierarchy implicit in eq. (1.2).

This procedure is consistent if the subtraction procedure (use of counterterms in the

Feynman rules) does not violate eq. (1.2) which is a non-linear equation in the bilinear

term
δΓ

δK0(x)

δΓ

δφa(x)
. (1.4)

At one-loop level this problem has been addressed in the paper [2]. There it was shown

that at one-loop level eq. (1.2) becomes linear and the counterterms given by the subtraction

procedure are a solution of the equation. So at the one-loop level there is no anomaly.

Moreover in the same paper the most general local finite renormalization compatible with

the functional equation has been classified (the number of these free parameters is finite,

a property that we indicated as weak power-counting theorem).

The simplest two-loop example where the bilinear term in eq. (1.4) is non-zero is the

four-point-amplitude involving two flat connections and two constrained fields. In this case

eq. (1.2) becomes

m2
D

2
∂µΓ

(2)

J
µ
a JK0K0

+ mDΓ
(2)
φaJK0K0

+ Γ
(2)
K0K0K0

Γ
(0)
φaJ + Γ

(1)
K0K0

Γ
(1)
φaK0J = 0 . (1.5)

In this paper we show that the subtraction procedure for the D = 4 limit provides ampli-

tudes that satisfy eq. (1.5). We do not evaluate explicitly the second-order counterterms,

rather we study eq. (1.5) where only the first order counterterms are introduced and we

prove that the local second order subtraction restores the validity of the equation.

The paper is organized as follows. In section 2 we consider the consequences of the

introduction of the first order counterterms on the functional equation at the two-loop

level. In section 3 we prove that the contribution of the graphs with no counterterms

cancel exactly. This result is obtained by a quantum action principle for the unsubtracted

amplitudes. In section 4 we consider the contribution of all graphs containing one-loop

counterterms. The result of these two sections allows the evaluation of the breaking term

of the functional equation which turns out to be local. This is described in section 5. We

conclude that the breaking term is removed completely by the subtraction procedure and

therefore that the functional equation is stable under renormalization in this particular

example.

2. Breaking of the functional equation

The object of our investigation is the amplitude Γ
(2)
JJK0K0

at the two-loop level in the

limit D = 4. The contribution to this amplitude without insertion of counterterms will be

denoted by Γ
(2,0)
JJK0K0

while the amplitude with one counterterms insertion will be denoted by

– 2 –
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Γ
(2,1)
JJK0K0

. The two contributions yield an amplitude Γ
(2,0)
JJK0K0

+Γ
(2,1)
JJK0K0

which is expected

to develop a pole in the limit D = 4, thus necessitating a further and last subtraction.

However before doing this last step we consider the breaking of the functional equation

caused by the one-loop counterterm insertion

m2
D

2
∂µ

(

Γ
(2,0)

J
µ
a

[JJK0K0] + Γ
(2,1)

J
µ
a

[JJK0K0]
)

+ mD

(

Γ
(2,0)
φa

[φJK0K0] + Γ
(2,1)
φa

[φJK0K0]
)

+

+
(

Γ
(2,0)
K0

[K0K0K0] + Γ
(2,1)
K0

[K0K0K0]
)

Γ
(0)
φa

[φJ ] +

+
(

Γ
(1,0)
K0

[K0K0] + Γ̂
(1)
K0

[K0K0]
)(

Γ
(1,0)
φa

[φK0J ] + Γ̂
(1)
φa

[φK0J ]
)

=

= ∆(2)[JJK0] . (2.1)

The crucial point is the evaluation of ∆(2). It is important to show that it is local and

that it is removed by the subtraction procedure. It is worth to recall here the subtraction

procedure at D = 4. This is performed recursively, i.e. after the (n−1)-subtraction has been

performed the resulting amplitudes are properly normalized and expanded in a Laurent

series at D = 4. Finally the pole parts, which are local, are removed by introducing the

counterterms in the effective action.

It is very crucial to respect the hierarchy and to normalize the amplitudes. The func-

tional equation shows that one has to make finite only the amplitudes involving derivatives

w.r.t Jµ and K0. In fact all the other amplitudes are derived by subsequent functional dif-

ferentiation w.r.t the field φa. For dimensional reasons the amplitudes are normalized by

(mD

m

)2(n−1)
ΓJ

µ1
a1

...J
µn
an

= m(n−1)(D−4)ΓJ
µ1
a1

...J
µn
an

. (2.2)

Once again we stress that the very definition of the theory at D = 4 crucially depends on

the subtraction procedure outlined above and our goal is to prove that it does not spoil

the functional equation (no anomalies).

3. Amplitudes without counterterms

It has been conjectured in [1] that the unsubtracted amplitudes satisfy the functional

equation. It is worth then to consider a subset of the terms appearing in eq. (2.1), i.e.

those involving amplitudes Γ(1,0) and Γ(2,0). In this section we in fact demonstrate the

correctness of the conjecture by using quantum action principle arguments [10]–[12].

We use the generating functional

Z[Ka,K0, Jµ] = exp

(

i Γ
(0)
int [φ,K0, J ]

∣

∣

∣

φa= 1
i

δ
δKa

)

exp

(

i

2

∫

Ka∆F Ka

)

, (3.1)

where tadpole contributions are discharged. Then we apply the operator S in eq. (1.1) to

the connected generating functional

W = −i ln Z (3.2)
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and we get

S(W ) = i

(

m2
D

2
∂µ δΓ(0)

δJa
µ

+ g2φaK0 +
δΓ(0)

δK0

δΓ(0)

δφa
+ gεabc

δΓ(0)

δφb
φc + 2D

[

δΓ(0)

δJ

]µ

ab

Jbµ

)

·

·W [Ka,K0, Jµ] (3.3)

where the · denotes the insertion. Since

(Γ(0),Γ(0)) =

(

m2
D

2
∂µ δΓ(0)

δJ
µ
a

+g2φaK0 +
δΓ(0)

δK0

δΓ(0)

δφa
+gεabc

δΓ(0)

δφb
φc+2D

[

δΓ(0)

δJ

]µ

ab

Jbµ

)

(x)

= 0 (3.4)

we obtain

S(W ) = 0 . (3.5)

All the insertions in the r.h.s. of eq. (3.3) mediated by one-particle states cancel out.

Therefore all the insertions of the composite operators in the r.h.s. of eq. (3.3) can be

replaced by insertions on Γ. Hence we get

i

(

m2
D

2
∂µ δΓ(0)

δJa
µ

+g2φaK0+
δΓ(0)

δK0

δΓ(0)

δφa
+gεabc

δΓ(0)

δφb
φc+2D

[

δΓ(0)

δJ

]µ

ab

Jbµ

)

·Γ[φa,K0, Jµ]=0 .

(3.6)

This equation can be used to perform a detailed diagrammatic analysis (see Appendix

A) of the validity of the functional equation (1.2) at two-loop level for the unsubtracted

amplitudes:

m2
D

2
∂µ

δΓ(2,0)[JJK0K0]

δJ
µ
a

+ mD
δΓ(2,0)[φJK0K0]

δφa
+

+
δΓ(2,0)[K0K0K0]

δK0

δΓ(0)[φJ ]

δφa
+

δΓ(1,0)[K0K0]

δK0

δΓ(1,0)[φaJK0]

δφa
= 0 . (3.7)

4. Amplitudes with one-loop counterterms

The surprising result of this section is that the sum of all the amplitudes carrying a one-

loop counterterm and that can potentially give a non-local contribution to ∆(2) in eq. (2.1)

do in fact sum up to zero:

m2
D

2
∂µΓ

(2,1)

J
µ
a

[JJK0K0] + mDΓ
(2,1)
φa

[K0K0Jφ]+

+Γ
(2,1)
K0

[K0K0K0]Γ
(0)
φa

[φJ ] + Γ
(1,0)
K0

[K0K0]Γ̂
(1)
φa

[φK0J ]+

+Γ̂
(1)
K0

[K0K0]Γ
(1,0)
φa

[JK0φ] = 0 . (4.1)

We first give a general argument based on the quantum action principle for the generating

functional of the amplitudes which now includes the counterterms at one-loop among the

Feynman rules. Then eq. (3.1) now becomes

Z1R[Ka,K0, J ] = exp

(

(iΓ
(0)
int + iΓ̂(1))

∣

∣

∣

φa= 1
i

δ
δKa

)

exp
( i

2

∫

Ka∆F Ka

)

. (4.2)
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The functional equation for the connected amplitudes W1R = −i ln Z1R now becomes

S(W1R) =

(

m2
D

2
∂µ δ[Γ(0) + Γ̂(1)]

δJ
µ
a (x)

+ g2φa(x)K0(x) +
δ[Γ(0) + Γ̂(1)]

δK0(x)

δ[Γ(0) + Γ̂(1)]

δφa(x)
+

+ 2D

[

δ[Γ(0) + Γ̂(1)]

δJ

]ab

µ

J
µ
b (x)

)

· W1R . (4.3)

The counterterms obey the linearized form of eq. (1.2) (see refs. [1, 2]):

m2
D

2
∂µ δΓ̂(1)

δJ
µ
a (x)

+
δΓ(0)

δK0(x)

δΓ̂(1)

δφa(x)
+

δΓ̂(1)

δK0(x)

δΓ(0)

δφa(x)
+ 2D

[

δΓ̂(1)

δJ

]ab

µ

J
µ
b (x) = 0 . (4.4)

Therefore as a consequence of the quantum action principle in eq. (4.3) and of eqs. (3.4)

and (4.4) we get

S(W1R) =
δΓ̂(1)

δK0(x)

δΓ̂(1)

δφa(x)
· W1R . (4.5)

This result can be explicitly verified in our particular example. In appendix B we

prove diagrammatically the validity of eq. (4.1) and consequently that of eq. (4.5) by the

evaluation of ∆(2) in eq. (2.1). Two different checks are needed. First one verifies that

indeed the insertion of the l.h.s. in eq. (4.4) is zero:





m2
D

2
∂µ δΓ̂(1)

δJ
µ
a (x)

+
δΓ(0)

δK0(x)

δΓ̂(1)

δφa(x)
+

δΓ̂(1)

δK0(x)

δΓ(0)

δφa(x)
+ 2D

[

δΓ̂(1)

δJ

]ab

µ

J
µ
b (x)



 · W1R = 0 .

(4.6)

Again all the insertions in the l.h.s. of eq. (4.6) mediated by one-particle states cancel out.

Therefore all the insertions of the composite operators in the r.h.s. of eq. (4.6) can be

replaced by insertions on Γ. Hence we get





m2
D

2
∂µ δΓ̂(1)

δJ
µ
a (x)

+
δΓ(0)

δK0(x)

δΓ̂(1)

δφa(x)
+

δΓ̂(1)

δK0(x)

δΓ(0)

δφa(x)
+ 2D

[

δΓ̂(1)

δJ

]ab

µ

J
µ
b (x)



 · Γ1R = 0 .

(4.7)

Moreover one needs to check that the insertion of the l.h.s. of eq. (3.4) is zero also at

one-loop level, i.e.

(Γ(0),Γ(0)) · W1R = 0 . (4.8)

In the above equation we can again restrict ourselves to the 1-PI amplitudes since the

insertions mediated by one-particles states in the l.h.s. cancel out, so that

(Γ(0),Γ(0)) · Γ1R = 0 . (4.9)

The diagrammatic evaluation of the l.h.s. eq. (4.1) is finally achieved by a combined

use of eq. (4.7) and eq. (4.9).
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5. Removal of the breaking ∆(2)[JK0K0]

The result of the previous sections has shown that the breaking of the functional equation

at the two-loop level after the introduction of the one-loop level counterterms is given by

∆(2) =
δΓ̂(1)

δK0(x)

δΓ̂(1)

δφa(x)
· Γ1R . (5.1)

In order to proceed further we specialize to the case we are dealing with

∆(2)[JK0K0] = Γ̂
(1)
K0(x)[K0K0]Γ̂

(1)
φa(x)[φJK0] · 1 (5.2)

=
( 1

D − 4

)2 6g8

(4π)4
1

m4m2
D

K0(x)(−4∂µK0(x)Jaµ(x) − K0(x)∂Ja(x)) .

This is of course a local insertion and then the last very crucial point is to verify that after

the subtraction procedure it disappears (not even finite parts are left over). In order to

prove that this is indeed the case one must remember that the subtraction of the poles

has to be performed on the normalized amplitudes as stated in eq. (2.2). Thus we have to

expand in a Laurent series both sides of the equation

1

m2

(mD

m

)2
(

m2
D

2
∂µ δΓ(2)[JJK0K0]

δJ
µ
a (x)

+ mD
δΓ(2)[φJK0K0]

δφa(x)
+

+
δΓ(1)[K0K0]

δK0(x)

δΓ(1)[φK0J ]

δφa(x)
+

δΓ(2)[K0K0K0]

δK0(x)

δΓ(0)[φJ ]

δφa(x)

)

=

=
1

m2

(mD

m

)2
∆(2)[K0K0J ] . (5.3)

In the r.h.s. m2
D cancels out and therefore the r.h.s. contains a pure double pole with

no finite parts left over. The pole part disappears after the subtraction procedure has been

performed on the l.h.s. of the above equation. Once again we stress that the subtraction pro-

cedure has to be applied in the l.h.s. of eq. (5.3) to each of the terms
(

mD

m

)4
Γ(2)[JJK0K0],

(

mD

m

)3
Γ(2)[φJK0K0] and

(

mD

m

)

Γ(2)[K0K0K0] (notice that δΓ(0)[φJ ]
δφa(x) = − 2

mD
∂Ja).

6. Conclusions and outlook

The aim of this paper is to show on a specific example that the subtraction procedure at

D = 4 is symmetric, i.e. the functional equation is stable under renormalization at the

two-loop level. The proof is based on the evaluation of the breaking term at two loops

after the introduction of first-order counterterms. We have been able to show that the

breaking is a local insertion. Moreover it is subtracted completely when we remove the

overall poles in D = 4 from the two-loop amplitudes corrected by the insertion of one-loop

counterterms.

The technique used can be probably applied to a general case since we use a recursive

method. As a by-product we have also shown that the perturbative series in generic di-

mension D satisfies the functional equation. After these results the theory looks promising

– 6 –
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and one can think to some phenomenological applications and to a more general approach

(systematic use of cohomological methods to classify finite renormalizations) to the renor-

malization of the non-linear sigma model.

Many open questions can be addressed at this point. We consider of particular interest

the possibility to interpret finite renormalizations as a kind of deformation of the geometry

of the φ-manifold [13]–[15] also in D = 4.

A. Diagrammatic analysis of the functional equation for unsubtracted am-

plitudes

We evaluate the insertion in the l.h.s. of eq. (3.6) in the relevant 1-PI sector spanned by

two K0 and one Jµ (see eq. (3.7)).

The functional equation (3.4) yields

m2
D

2
∂µ δΓ(0)[Jφφφ]

δJ
µ
a (x)

+ mD
δΓ(0)[φφφφ]

δφa(x)
+

δΓ(0)[K0φφ]

δK0(x)

δΓ(0)[φφ]

δφa(x)
= 0 , (A.1)

m2
D

2
∂µ δΓ(0)[Jφφ]

δJ
µ
a (x)

+ gεabc
δΓ(0)[φφ]

δφb(x)
φc(x) = 0 , (A.2)

mD
δΓ(0)[K0φφφφ]

δφa(x)
+

δΓ(0)[K0φφ]

δK0(x)

δΓ(0)[K0φφ]

δφa(x)
= 0 , (A.3)

mD
δΓ(0)[Jφφφφφ]

δφa(x)
+

δΓ(0)[K0φφ]

δK0(x)

δΓ(0)[Jφφφ]

δφa(x)
+

+
δΓ(0)[K0φφφφ]

δK0(x)

δΓ(0)[Jφ]

δφa(x)
= 0 , (A.4)

mD
δΓ(0)[Jφφφ]

δφa(x)
+

δΓ(0)[K0φφ]

δK0(x)

δΓ(0)[Jφ]

δφa(x)
+

+gεabc
δΓ(0)[Jφφ]

δφb(x)
φc(x) − 2gεabc

δΓ(0)[Jφφ]

δJ
µ
c (x)

J
µ
b (x) = 0 . (A.5)

From eq. (A.1) we obtain (in 〈·〉 we omit the T -symbol in order to simplify the nota-

tions)

1

2

〈(

m2
D

2
∂µ δΓ(0)[Jφφφ]

δJ
µ
a (x)

+ mD
δΓ(0)[φφφφ]

δφa(x)
+

δΓ(0)[K0φφ]

δK0(x)

δΓ(0)[φφ]

δφa(x)

)

×

× Γ(0)[Jφφφ]Γ(0)[K0φφ]Γ(0)[K0φφ]

〉

−

−

〈〈

(

m2
D

2
∂µ δΓ(0)[Jφφφ]

δJ
µ
a (x)

+ mD
δΓ(0)[φφφφ]

δφa(x)
+

δΓ(0)[K0φφ]

δK0(x)

δΓ(0)[φφ]

δφa(x)

)

Γ(0)[K0φφ]

〉

×

×

〈

Γ(0)[Jφφφ]Γ(0)[K0φφ]

〉〉

= 0 . (A.6)

The second term in the above equation subtracts the connected but not 1-PI contribution,

depicted in figure 1, which enters in the set of contractions in the first term of eq. (A.6).
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Figure 1: Spurious (non 1-PI) contribution in the insertion of eq. (A.6) (stars and boxes are

insertions of flat connections and of φ0 respectively).

Furthermore we obtain from eq. (A.2)

〈(m2
D

2
∂µ δΓ(0)[Jφφ]

δJ
µ
a (x)

+gεabc
δΓ(0)[φφ]

δφb(x)
φc(x)

)

Γ(0)[Jφφ]Γ(0)[K0φφφφ]Γ(0)[K0φφ]
〉

= 0 (A.7)

and also

i

2

〈(m2
D

2
∂µ δΓ(0)[Jφφ]

δJ
µ
a (x)

+ gεabc
δΓ(0)[φφ]

δφb(x)
φc(x)

)

Γ(0)[Jφφ]Γ(0)[K0φφ] ×

× Γ(0)[K0φφ]Γ(0)[φφφφ]
〉

= 0 . (A.8)

From eq. (A.3) we get

−i
〈(

mD
δΓ(0)[K0φφφφ]

δφa(x)
+

δΓ(0)[K0φφ]

δK0(x)

δΓ(0)[K0φφ]

δφa(x)

)

Γ(0)[K0φφ]Γ(0)[Jφφφ]
〉

= 0 . (A.9)

From eq. (A.4) we get

−
i

2

〈(

mD
δΓ(0)[Jφφφφφ]

δφa(x)
+

δΓ(0)[K0φφ]

δK0(x)

δΓ(0)[Jφφφ]

δφa(x)
+

δΓ(0)[K0φφφφ]

δK0(x)

δΓ(0)[Jφ]

δφa(x)

)

×

× Γ(0)[K0φφ]Γ(0)[K0φφ]

〉

= 0 . (A.10)

In order to decompose further the diagrams contributing to the above insertions we

need the fact that

¤x ∆F (x − y) = −iδD(x − y) . (A.11)

By using eq. (A.11) the third term in the first line of eq. (A.6) becomes

1

2

〈

δΓ(0)[K0φφ]

δK0(x)

δΓ(0)[φφ]

δφa(x)
Γ(0)[Jφφφ]Γ(0)[K0φφ]Γ(0)[K0φφ]

〉

=

= −
1

2

〈

δΓ(0)[K0φφ]

δK0(x)
¤φa(x)Γ(0)[Jφφφ]Γ(0)[K0φφ]Γ(0)[K0φφ]

〉

= i

〈

δΓ(0)[K0φφ]

δφa(x)
Γ(0)[K0φφ]

δΓ(0)[K0φφ]

δK0(x)
Γ(0)[Jφφφ]

〉

+

+
1

2
i

〈

Γ(0)[K0φφ]Γ(0)[K0φφ]
δΓ(0)[K0φφ]

δK0(x)

δΓ(0)[Jφφφ]

δφa(x)

〉

. (A.12)
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In a similar fashion the third term in the third line of the l.h.s. of eq. (A.6) can be simplified

as follows:

−
〈〈δΓ(0)[K0φφ]

δK0(x)

δΓ(0)[φφ]

δφa(x)
Γ(0)[K0φφ]

〉〈

Γ(0)[Jφφφ]Γ(0)[K0φφ]
〉〉

=

=
〈〈δΓ(0)[K0φφ]

δK0(x)
¤φa(x)Γ(0)[K0φφ]

〉〈

Γ(0)[Jφφφ]Γ(0)[K0φφ]
〉〉

= −i
〈〈δΓ(0)[K0φφ]

δK0(x)
Γ(0)[K0φφ]

〉〈

Γ(0)[Jφφφ]
δΓ(0)[K0φφ]

δφa(x)

〉〉

, (A.13)

where all contributions including tadpoles have been discarded.

The second term in the l.h.s. of eq. (A.7) becomes

〈

gεabc
δΓ(0)[φφ]

δφb(x)
φc(x)Γ(0)[Jφφ]Γ(0)[K0φφφφ]Γ(0)[K0φφ]

〉

=

= −
〈

gεabc¤φb(x)φc(x)Γ(0)[Jφφ]Γ(0)[K0φφφφ]Γ(0)[K0φφ]
〉

= i
〈

gεabc
δΓ(0)[Jφφ]

δφb(x)
φc(x)Γ(0)[K0φφφφ]Γ(0)[K0φφ]

〉

(A.14)

since by the functional equation

gεabc
δΓ(0)[K0φφφφ]

δφb(x)
φc(x) = 0 ,

gεabc
δΓ(0)[K0φφ]

δφb(x)
φc(x) = 0 . (A.15)

The second term in the l.h.s. of eq. (A.8) becomes

i

2

〈

gεabc
δΓ(0)[φφ]

δφb(x)
φc(x)Γ(0)[Jφφ]Γ(0)[K0φφ]Γ(0)[K0φφ]Γ(0)[φφφφ]

〉

=

= −
i

2

〈

gεabc¤φb(x)φc(x)Γ(0)[Jφφ]Γ(0)[K0φφ]Γ(0)[K0φφ]Γ(0)[φφφφ]
〉

= −
1

2

〈

gεabc
δΓ(0)[Jφφ]

δφb(x)
φc(x)Γ(0)[K0φφ]Γ(0)[K0φφ]Γ(0)[φφφφ]

〉

(A.16)

by the second of eqs. (A.15) and the equation

gεabc
δΓ(0)[φφφφ]

δφb(x)
φc(x) = 0 , (A.17)

which also follows from the functional equation for Γ(0).

It is also convenient to replace the insertion of the composite operator gεabc
δΓ(0)[Jφφ]

δφb(x) ×

φc(x) in eqs. (A.14) and (A.16) with that of

−mD
δΓ(0)[Jφφφ]

δφa(x)
−

δΓ(0)[K0φφ]

δK0(x)

δΓ(0)[Jφ]

δφa(x)
+ 2gεabc

δΓ(0)[Jφφ]

δJ
µ
c (x)

J
µ
b (x)
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by using eq. (A.5). We now notice that the relevant unsubtracted amplitudes give rise to

the following contractions:

i
m2

D

2
∂µ δ

δJ
µ
a (x)

Γ(2,0)[JJK0K0] =

=
1

2

〈m2
D

2
∂µ δΓ(0)[Jφφφ]

δJ
µ
a (x)

Γ(0)[Jφφφ]Γ(0)[K0φφ]Γ(0)[K0φφ]
〉

+

+
〈m2

D

2
∂µ δΓ(0)[Jφφ]

δJ
µ
a (x)

Γ(0)[Jφφ]Γ(0)[K0φφφφ]Γ(0)[K0φφ]
〉

+

+
i

2

〈m2
D

2
∂µ δΓ(0)[Jφφ]

δJ
µ
a (x)

Γ(0)[Jφφ]Γ(0)[K0φφ]Γ(0)[K0φφ]Γ(0)[φφφφ]
〉

−

−
〈〈m2

D

2
∂µ δΓ(0)[Jφφφ]

δJ
µ
a (x)

Γ(0)[K0φφ]
〉〈

Γ(0)[Jφφφ]Γ(0)[K0φφ]
〉〉

, (A.18)

imD
δ

δφa(x)
Γ(2,0)[φJK0K0] =

=
1

2

〈

mD
δΓ(0)[φφφφ]

δφa(x)
Γ(0)[K0φφ]Γ(0)[K0φφ]Γ(0)[Jφφφ]

〉

+

+
1

2

〈

Γ(0)[φφφφ]Γ(0)[K0φφ]Γ(0)[K0φφ] mD
δΓ(0)[Jφφφ]

δφa(x)

〉

−

− i
〈

mD
δΓ(0)[K0φφφφ]

δφa(x)
Γ(0)[K0φφ]Γ(0)[Jφφφ]

〉

−

− i
〈

Γ(0)[K0φφφφ]Γ(0)[K0φφ] mD
δΓ(0)[Jφφφ]

δφa(x)

〉

−

−
i

2

〈

mD
δΓ(0)[Jφφφφφ]

δφa(x)
Γ(0)[K0φφ]Γ(0)[K0φφ]

〉

−

−
〈〈

mD
δΓ(0)[Jφφφ]

δφa(x)
Γ(0)[K0φφ]

〉〈

Γ(0)[φφφφ]Γ(0)[K0φφ]
〉〉

−

−
〈〈

Γ(0)[Jφφφ]Γ(0)[K0φφ]
〉〈

mD
δΓ(0)[φφφφ]

δφa(x)
Γ(0)[K0φφ]

〉〉

(A.19)

and

i
δΓ(1,0)[K0K0]

δK0(x)

δΓ(1,0)[φK0J ]

δφa(x)
= −i

〈δΓ(0)[K0φφ]

δK0(x)
Γ(0)[K0φφ]

〉〈δΓ(0)[Jφφφ]

δφa(x)
Γ(0)[K0φφ]

〉

,

(A.20)

i
δΓ(2,0)[K0K0K0]

δK0(x)

δΓ(0)[φJ ]

δφa(x)
=

1

2

〈

Γ(0)[φφφφ]
δΓ(0)[K0φφ]

δK0(x)
Γ(0)[K0φφ]Γ(0)[K0φφ]

〉

×

×
δΓ(0)[φJ ]

δφa(x)
−

i

2
× (A.21)

×
〈δΓ(0)[K0φφφφ]

δK0(x)
Γ(0)[K0φφ]Γ(0)[K0φφ]

〉δΓ(0)[φJ ]

δφa(x)
−

− i
〈

Γ(0)[K0φφφφ]
δΓ(0)[K0φφ]

δK0(x)
Γ(0)[K0φφ]

〉δΓ(0)[φJ ]

δφa(x)
.
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Figure 2: Spurious (non 1-PI) contribution to Γ(2,0)[JJK0K0].

Figure 3: Spurious (non 1-PI) contribution to Γ(2,0)[φJK0K0].

The last terms in eq. (A.18) and in eq. (A.19) subtract the connected but not 1-PI

contributions, shown in figure 2 and 3, that enter in the first term on the r.h.s. of eqs. (A.18)

and (A.19) respectively.

By using eqs. (A.12)–(A.14) and (A.16) and the fact that Γ(2,0)[JK0K0] is zero by

SU(2) global symmetry a straightforward computation shows that the sum of eqs.(A.6)–

(A.10) yields

i
m2

D

2
∂µ δΓ(2,0)[JJK0K0]

δJ
µ
a (x)

+ imD
δΓ(2,0)[φJK0K0]

δφa(x)
+

+i
δΓ(1,0)[K0K0]

δK0(x)

δΓ(1,0)[φK0J ]

δφa(x)
+ i

δΓ(2,0)[K0K0K0]

δK0(x)

δΓ(0)[φJ ]

δφa(x)
= 0 , (A.22)

i.e. the functional equation for the unsubtracted amplitudes.

B. Diagrammatic analysis of the functional equation for amplitudes with

one counterterm insertion

We evaluate the insertions in eq. (4.7) and eq. (4.9) in the relevant sector spanned by two

K0 and one Jµ.

The one-loop functional equation for the counterterms (4.4) yields

mD
δΓ̂(1)[K0Jφφφ]

δφa(x)
+

δΓ̂(1)[K0K0]

δK0(x)

δΓ(0)[φφφJ ]

δφa(x)
+

+
δΓ̂(1)[φK0J ]

δK0(x)

δΓ(0)[φφK0]

δφa(x)
+

+
δΓ(0)[φφK0]

δK0(x)

δΓ̂(1)[φK0J ]

δφa(x)
+

+
δΓ̂(1)[K0K0φφ]

δK0(x)

δΓ(0)[φaJ ]

δφa(x)
+

m2
D

2
∂µ δΓ̂(1)[K0JJφφ]

δJ
µ
a (x)

+
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−2gεabc
δΓ̂(1)[K0Jφφ]

δJ
µ
c (x)

J
µ
b (x) + gεabc

δΓ̂(1)[K0Jφφ]

δφb(x)
φc(x) = 0 , (B.1)

mD
δΓ̂(1)[Jφφφ]

δφa(x)
+

δΓ̂(1)[K0Jφ]

δK0(x)

δΓ(0)[φφ]

δφa(x)
+

δΓ̂(1)[K0φφ]

δK0(x)

δΓ(0)[φJ ]

δφa(x)
+

+
m2

D

2
∂µ δΓ̂(1)[JJφφ]

δJ
µ
a (x)

− 2gεabc
δΓ̂(1)[Jφφ]

δJ
µ
c (x)

J
µ
b (x) + gεabc

δΓ̂(1)[Jφφ]

δφb(x)
φc(x) = 0 . (B.2)

The zero-loop functional equation (3.4) yields

mD
δΓ(0)[Jφφφ]

δφa(x)
− 2gεabc

δΓ(0)[Jφφ]

δJ
µ
c (x)

J
µ
b (x)+

+gεabc
δΓ(0)[Jφφ]

δφb(x)
φc(x) +

δΓ(0)[K0φφ]

δK0(x)

δΓ(0)[Jφ]

δφa(x)
= 0 . (B.3)

The insertion of eq. (B.1) gives

−
〈(

mD
δΓ̂(1)[K0Jφφφ]

δφa(x)
+

δΓ̂(1)[K0K0]

δK0(x)

δΓ(0)[φφφJ ]

δφa(x)
+

δΓ̂(1)[φK0J ]

δK0(x)

δΓ(0)[φφK0]

δφa(x)
+

+
δΓ(0)[φφK0]

δK0(x)

δΓ̂(1)[φK0J ]

δφa(x)
+

δΓ̂(1)[K0K0φφ]

δK0(x)

δΓ(0)[φaJ ]

δφa(x)
+

m2
D

2
∂µ δΓ̂(1)[K0JJφφ]

δJ
µ
a (x)

−

− 2gεabc
δΓ̂(1)[K0Jφφ]

δJ
µ
c (x)

J
µ
b (x) + gεabc

δΓ̂(1)[K0Jφφ]

δφb(x)
φc(x)

)

Γ(0)[K0φφ]
〉

= 0 . (B.4)

Moreover the insertion in eq. (B.2) yields

−
i

2

〈(

mD
δΓ̂(1)[Jφφφ]

δφa(x)
+

δΓ̂(1)[K0Jφ]

δK0(x)

δΓ(0)[φφ]

δφa(x)
+

δΓ̂(1)[K0φφ]

δK0(x)

δΓ(0)[φJ ]

δφa(x)
+

+
m2

D

2
∂µ δΓ̂(1)[JJφφ]

δJ
µ
a (x)

− 2gεabc
δΓ̂(1)[Jφφ]

δJ
µ
c (x)

J
µ
b (x) +

+ gεabc
δΓ̂(1)[Jφφ]

δφb(x)
φc(x)

)

Γ(0)[K0φφ]Γ(0)[K0φφ]
〉

= 0 . (B.5)

The insertion in eq. (B.3) finally gives

−
〈(

mD
δΓ(0)[Jφφφ]

δφa(x)
− 2gεabc

δΓ(0)[Jφφ]

δJ
µ
c (x)

J
µ
b (x) +

+ gεabc
δΓ(0)[Jφφ]

δφb(x)
φc(x) +

δΓ(0)[K0φφ]

δK0(x)

δΓ(0)[Jφ]

δφa(x)

)

Γ̂(1)[K0K0φφ]
〉

= 0 (B.6)

and

−i
〈(

mD
δΓ(0)[Jφφφ]

δφa(x)
− 2gεabc

δΓ(0)[Jφφ]

δJ
µ
c (x)

J
µ
b (x) + (B.7)

+ gεabc
δΓ(0)[Jφφ]

δφb(x)
φc(x) +

δΓ(0)[K0φφ]

δK0(x)

δΓ(0)[Jφ]

δφa(x)

)

Γ̂(1)[K0φφ]Γ(0)[K0φφ]
〉

= 0 .
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The second term in the l.h.s. of eq. (B.4) yields

i
δΓ̂(1)[K0K0]

δK0(x)

δΓ(1,0)[JK0φ]

δφa(x)
(B.8)

since

i
δΓ(1,0)[JK0φ]

δφa(x)
= −

〈δΓ(0)[Jφφφ]

δφa(x)
Γ(0)[K0φφ]

〉

. (B.9)

The fourth term in the l.h.s. eq. (B.4) yields

i
δΓ̂(1)[JK0φ]

δφa(x)

δΓ(1,0)[K0K0]

δK0(x)
(B.10)

since

i
δΓ(1,0)[K0K0]

δK0(x)
= −

〈δΓ(0)[K0φφ]

δK0(x)
Γ(0)[K0φφ]

〉

. (B.11)

The terms proportional to δΓ(0) [Jφ]
δφa(x) in eqs. (B.4), (B.5), (B.6) and (B.8) yield

i
δΓ(2,1)[K0K0K0]

δK0(x)

δΓ(0)[φJ ]

δφa(x)
(B.12)

as one can see by taking the derivative w.r.t. K0(x) of

iΓ(2,1)[K0K0K0] = −
〈

Γ̂(1)[K0K0φφ]Γ(0)[K0φφ]
〉

−
i

2

〈

Γ̂(1)[K0φφ]Γ(0)[K0φφ]Γ(0)[K0φφ]
〉

. (B.13)

The second term in the l.h.s. of eq. (B.5) contains δΓ(0)[φφ]
δφa(x) = −¤φa(x). By making use of

eq. (A.11) it can be easily checked by a direct computation that the amplitudes involving

the second term in the l.h.s. of eq. (B.5) cancel out with those involving the third term in

eq. (B.4).

We now evaluate the two-loop amplitudes corrected with the one-loop counterterms

which enter in the first line of eq. (4.1):

i
m2

D

2
∂µ δΓ(2,1)[JJK0K0]

δJ
µ
a

= −
〈m2

D

2
∂µ δΓ̂(1)[JJK0φφ]

δJ
µ
a

Γ(0)[K0φφ]
〉

−

−
i

2

〈m2
D

2
∂µ δΓ̂(1)[JJφφ]

δJ
µ
a

Γ(0)[K0φφ]Γ(0)[K0φφ]
〉

−

− i
〈m2

D

2
∂µ δΓ̂(1)[JK0φφ]

δJ
µ
a

Γ(0)[Jφφ]Γ(0)[K0φφ]
〉

−

− i
〈

Γ̂(1)[JK0φφ]
m2

D

2
∂µ δΓ(0)[Jφφ]

δJ
µ
a

Γ(0)[K0φφ]
〉

−

− i
〈

Γ̂(1)[K0K0φφ]
m2

D

2
∂µ δΓ(0)[Jφφ]

δJ
µ
a

Γ(0)[Jφφ]
〉

+

+
1

2

〈m2
D

2
∂µ δΓ̂(1)[Jφφ]

δJ
µ
a

Γ(0)[Jφφ]Γ(0)[K0φφ]Γ(0)[K0φφ]
〉

+
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+
1

2

〈

Γ̂(1)[Jφφ]
m2

D

2
∂µ δΓ(0)[Jφφ]

δJ
µ
a

Γ(0)[K0φφ]Γ(0)[K0φφ]
〉

+

+
〈

Γ̂(1)[K0φφ]
m2

D

2
∂µ δΓ(0)[Jφφ]

δJ
µ
a

Γ(0)[Jφφ]Γ(0)[K0φφ]
〉

,(B.14)

imD
δΓ(2,1)[φJK0K0]

δφa(x)
= −

〈

Γ(0)[K0φφ] mD
δΓ̂(1)[K0Jφφφ]

δφa(x)

〉

−

−
i

2

〈

Γ(0)[K0φφ]Γ(0)[K0φφ] mD
δΓ̂(1)[Jφφφ]

δφa(x)

〉

−

−
〈

mD
δΓ(0)[Jφφφ]

δφa(x)
Γ̂(1)[K0K0φφ]

〉

−

− i
〈

mD
δΓ(0)[Jφφφ]

δφa(x)
Γ(0)[K0φφ]Γ̂(1)[K0φφ]

〉

. (B.15)

In order to proceed further one needs to use eq. (A.2) into eq. (B.14). This allows to

replace the insertion of
m2

D

2
∂µ δΓ(0)[Jφφ]

δJ
µ
a

with that of

−gεabc
δΓ(0)[φφ]

δφb(x)
φc(x) = gεabc¤φb(x)φc(x) .

One can then perform in a straightforward way the relevant contractions with the help

of eq. (A.11). It is also convenient to use the fact that, as a consquence of the one-loop

functional equation, the following identities hold:

m2
D

2
∂µ

δΓ̂(1)[K0Jφφ]

δJ
µ
a (x)

+ gεabc
δΓ̂(1)[K0φφ]

δφb(x)
φc(x) = 0 (B.16)

and
m2

D

2
∂µ

δΓ̂(1)[Jφφ]

δJ
µ
a (x)

= 0 . (B.17)

In the above equation we have used the fact that Γ̂
(1)

φaφb = 0 (see refs. [1, 2]). Therefore one

obtains

i
m2

D

2
∂µ δΓ(2,1)[JJK0K0]

δJ
µ
a (x)

= −
〈m2

D

2
∂µ δΓ̂(1)[JJK0φφ]

δJ
µ
a (x)

Γ(0)[K0φφ]
〉

−

−
i

2

〈m2
D

2
∂µ δΓ̂(1)[JJφφ]

δJ
µ
a (x)

Γ(0)[K0φφ]Γ(0)[K0φφ]
〉

−

−
〈

gεabc
δΓ̂(1)[JK0φφ]

δφb(x)
φc(x)Γ(0)[K0φφ]

〉

−

−
〈

gεabc
δΓ(0)[Jφφ]

δφb(x)
φc(x)Γ̂(1)[K0K0φφ]

〉

−

−
i

2

〈

gεabc
δΓ̂(1)[Jφφ]

δφb(x)
φc(x)Γ(0)[K0φφ]Γ(0)[K0φφ]

〉

−

− i
〈

gεabc
δΓ(0)[Jφφ]

δφb(x)
φc(x)Γ̂(1)[K0φφ]Γ(0)[K0φφ]

〉

. (B.18)
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By taking into account eqs. (B.8), (B.10), (B.12), (B.15) and (B.18) and the fact that

Γ(2,1)[K0K0J ] is zero by SU(2) global symmetry the sum of eqs. (B.4), (B.5), (B.6) and

(B.8) yields finally

i
(m2

D

2
∂µΓ

(2,1)

J
µ
a

[JJK0K0] + mDΓ
(2,1)
φa

[K0K0Jφ] +

+ Γ
(2,1)
K0

[K0K0K0]Γ
(0)
φa

[φJ ] + Γ
(1,0)
K0

[K0K0]Γ̂
(1)
φa

[φK0J ] +

+ Γ̂
(1)
K0

[K0K0]Γ
(1,0)
φa

[JK0φ]
)

= 0 . (B.19)
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